Inert- und Brenngaseinfluss auf die Stabilitätsgrenzdrücke von Ethen und Ethin

- Simulation und experimentelle Bestimmung

Der Fakultät für

Naturwissenschaften

der Gerhard-Mercator-Universität - Gesamthochschule Duisburg zur Erlangung des akademischen Grades eines

Doktor rer. nat.

genehmigte Dissertation

von

Kai Holtappels

aus

Eckernförde

Datum der mündlichen Prüfung: 10.12.2001

Referent: Prof. Dr. Axel Schönbucher

Korreferent: Prof. Dr. Tammo Redeker

Zusammenfassung

Es werden die physikalischen-chemischen Grundlagen des halbempirischen Simulationsmodells EPSIM zur Simulation des Inertgaseinflusses auf die Explosionsgrenzen von Brenngas/Luft-Gemischen auch bei erhöhten Anfangsdrücken und -temperaturen vorgestellt. Durch Modifizierung des Simulationsmodells werden erstmals der Inert- und Brenngaseinfluss auf den Stabilitätsgrenzdruck von C₂H₂ simuliert. Das Modell basiert auf der stationären, eindimensionalen Ausbreitung einer laminaren, homogenen Flamme unter Berücksichtigung der Stoffmengenbilanz für die Mangelkomponente des Systems und der Energiebilanz des Systems ohne die Berücksichtigung von Wärmestrahlungsverlusten an die Umgebung. Das erforderliche Grenzkriterium für die Festlegung einer Explosions- bzw. Stabilitätsgrenze ist eine bestimmte Flammentemperatur, die über den weiteren Verlauf der Grenzkurve als konstant angenommen wird. Diese Flammentemperatur wird unter Verwendung gemessener Stabilitätsgrenzdrücke bzw. Explosionsgrenzen berechnet. In den Simulationen werden zur Bestimmung der Gesamt-Reaktionsenthalpie des Systems die Gleichgewichtsstoffmengenanteile der formulierten Bruttoreaktionen iterativ berechnet. Dabei werden erstmals neben homogenen auch heterogene Bruttoreaktionen berücksichtigt. Dadurch wurde eine wichtige Zerfallsreaktion unter Bildung von elementarem Kohlenstoff berücksichtigt.

Für modifizierten die Simulationen mit dem Modell **EPSIM** wurde ein Reaktionsgleichungssystem aus Bruttoreaktionen für die Berechnung des Inert- oder Brenngaseinflusses auf die Stabilitätsgrenzdrücke von C₂H₂ formuliert, worin allein analytisch nachgewiesene stabile Reaktionsprodukte berücksichtigt wurden. Es wurden hierbei die Moleküle Butadiin C₄H₂ und Acenaphthalin C₁₂H₈ als Rußvorstufen berücksichtigt. Für die C₂H₂/N₂-, C₂H₂/CO₂-, C₂H₂/NH₃-und C₂H₂/H₂-Gassysteme wird eine gute Übereinstimmung der simulierten mit den gemessenen Stabilitätsgrenzdrücken erzielt. Bei der Simulation der Stabilitätsgrenzdrücke von C₂H₂/C₂H₄-Gasgemischen wurde das Reaktionsgleichungssystem um die Bruttoreaktion für den C₂H₄-Zerfall in CH₄ und elementaren Kohlenstoff erweitert. Es wird eine gute Übereinstimmung zwischen Simulation und Messung für Gasgemische mit einem C₂H₂-Stoffmengenanteil größer 30 Mol-% gefunden.

Zur Simulation des Inertgaseinflusses auf die Explosionsgrenzen des $C_2H_4/N_2/L$ uft-Gassystems bei verschiedenen Anfangsdrücken und –temperaturen mit dem Modell EPSIM wurde ein System von Bruttoreaktionen formuliert, das die stöchiometrische Verbrennungsreaktion, die Zerfallsreaktion des C_2H_4 in CH_4 und elementaren Kohlenstoff sowie die Reaktionen mit den

Molekülen C₄H₂ und C₁₂H₈ als Rußvorstufen enthält. Über den Verlauf der unteren und oberen Explosionsgrenze wird eine gute Übereinstimmung mit den Messwerten erzielt. Insbesondere der untypische Verlauf der oberen Explosionsgrenze bei erhöhten Anfangsdrücken und -temperaturen wird gut wiedergegeben.

In ca. 1300 Zündversuchen wurden die zur Validierung des modifizierten Simulationsmodells EPSIM notwendigen Messergebnisse ermittelt. Es wurden 12 Stabilitätsgrenzdrücke von C_2H_2 und C_2H_4 in Abhängigkeit von der Temperatur sowie 46 Stabilitätsgrenzdrücke von C_2H_2/N_2 -, C_2H_2/CO_2 -, C_2H_2/H_2 - und C_2H_2/NH_3 -Gasgemischen bei Anfangstemperaturen von 20 °C und 100 °C in Abhängigkeit vom C_2H_2 -Stoffmengenanteil experimentell bestimmt. Außerdem wurden 21 Stabilitätsgrenzdrücke von C_2H_2/C_2H_4 -Gasgemischen bei Anfangstemperaturen von 20 °C, 100 °C und 150 °C ermittelt. In weiteren ca. 200 Zündversuchen wurden zehn Explosionsgrenzen des Gassystems $C_2H_4/N_2/L$ uft bei einer Anfangstemperatur von 100 °C und einem Anfangsdruck von 100 bar gemessen. Alle Versuche sind in einer neuen Apparatur zur Bestimmung sicherheitstechnischer Kenngrößen nach dem Druckschwellenkriterium auch bei erhöhten Anfangsdrücken und -temperaturen bei der Bundesanstalt für Materialforschung und -prüfung (BAM) durchgeführt worden.

In einem Temperaturbereich von 20 °C bis 150 °C wurde kein Temperatureinfluss auf die Stabilitätsgrenzdrücke von C_2H_2 festgestellt. Der Stabilitätsgrenzdrück beträgt 1.0 bar. Der Stabilitätsgrenzdrück von C_2H_4 nimmt im gemessenen Temperaturbereich von 150 °C bis 200 °C mit steigender Anfangstemperatur von 135 bar auf 80 bar ab. Die Inertgase N_2 und CO_2 sowie auch die Brenngase H_2 und NH_3 üben einen phlegmatisierenden Einfluss auf den Zerfall von C_2H_2 aus. Mit zunehmendem Inert- oder Brenngasanteil im Gasgemisch steigt der Stabilitätsgrenzdrück der Gasgemische. Der phlegmatisierende Einfluss der Fremdgase nimmt in der Reihenfolge $H_2 < N_2 < CO_2 < NH_3$ zu. Bei einem C_2H_2 -Stoffmengenanteil von 60 Mol-% und einer Anfangstemperatur von 20 °C beträgt der Stabilitätsgrenzdrück 2.2 bar bei C_2H_2/H_2 -Gemischen, 2.9 bar bei C_2H_2/N_2 -Gemischen, 4.8 bar bei C_2H_2/CO_2 Gemischen und 6.4 bar bei C_2H_2/NH_3 -Gemischen. Durch die experimentelle Bestimmung der Stabilitätsgrenzdrücke von C_2H_2/C_2H_4 -Gasgemischen wurde ein binäres Gassystem aus zwei instabilen Gasen untersucht. Mit abnehmendem C_2H_2 -Stoffmengenanteil steigt der Stabilitätsgrenzdrück z.B. bei einer Anfangstemperatur von 150 °C von 1 bar bei 100 Mol-% C_2H_2 nicht-linear auf 135 bar bei 100 Mol-% C_2H_4 an.

Die experimentelle Bestimmung der Explosionsgrenzen von C₂H₄/N₂/Luft-Gemischen zeigt, dass mit steigendem N₂-Stoffmengenanteil der Explosionsbereich des Gassystems kleiner wird.

Die vollständige Inertisierung des Systems wird bei einem Stickstoffanteil von 62.0 Mol-% erreicht. Bei einer oberen Explosionsgrenze von 100 Mol-% C₂H₄ entspricht der Anfangsdruck bzw. die Anfangstemperatur der Explosionsgrenze dem Stabilitätsgrenzdruck von 100 bar bzw. der Stabilitätsgrenztemperatur von 175 °C.

Durch Visualisierung einer C_2H_2 -Zerfallsreaktion mit High-Speed-Videoaufnahmen und aus dem simultan gemessenen Druck/Zeit-Verlauf lassen sich erstmals die detaillierte Form der Druck/Zeit-Kurve physikalisch erklären.